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During this period, the primary area of investigation was the study of the behavior of sto-

chastic processes whose power spectra are described by power-law or piecewise power-law

behavior. The attached paper (to be submitted to Geophysical Research Letters) gives the

details of the analysis and the conclusions we have reached. We are extending this analysis to

compare the detection capabilities of different measurement techniques (e.g., gravimetry and
GPS for the vertical, and seismometers and GPS for the horizontal), both in general and for the

specific case of the deformations produced by a dislocation in a half-space (which applies to

seismic or preseismic sources).

If the source of deformation can be approximated by a dislocation in a halfspace, the

average displacement X" at a distance A from a source with moment M 0 is very nearly

= K,,MdA 2, for distances of more than a few source dimensions. Sirnilarly, the average dis-

placement gradient (strain or til0 g can be approximated by g = KeMdA 3. (At close distances

these expressions overestimate the effects). For vector horizontal displacement and maximum
extension around a vertical strike-slip fault, we find Kz = 5x10 "t2 and K E = 10-n (A in m, Mo

in N-m).

Even though strains and tilts decay much faster with distance than displacements do, the

much higher resolution with which strain can be observed over short times makes such obser-

vations considerably more sensitive to rapidly-changing sources. Suppose that over a time t
we can resolve changes in strain of e(t) and in displacement of x(t). Then we can, for exam-

ple, detect strain changes from a dislocation that releases a moment Mo(t) for distances less

than A_, where e(t)= Kt.MdA _. We can compute a similar distance Ax for displacement
measurements. The ratio of areas within which the moment release is detectable then reflects

the relative density of measurements needed to attain the same detection capability. This is

A ,,Mo)=
= ce)

Using the values of Kx and Kt given above, and the short-term resolutions of 10-1° for strain

(e(t)) and 2x10 -3 m for planned continuous GPS systems (x(t)), we find A to be about 100

for M0 = 10 lg (Mw = 6); for such rapid changes, a single strain installation could be expected

to cover the same area as 100 geodetic stations. The scaling with moment means that the area

"covered" by strain measurements exceeds that for displacement measurements even for the

largest earthquakes. For larger t this ratio of areas will not be as great, but for any t, the
smaller the source, the greater the relative advantage of measuring displacement gradient rather

than displacement. To take an example for a small event, the maximum surface displacement

expected from a magnitude 4 earthquake at 10 km depth is only 15 microns, while its strain is

an easily detectable 2x10 -9.
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THE TIME-DOMAIN BEHAVIOR OF POWER-LAW NOISES

Duncan Can" Agnew

Institute of Geophysics and Planetary Physics, University of California, San Diego

Abstract The power spectra of many geophysical phenomena are weI1 approxi-

mated by a power-law dependence on frequency or wavenumber. I derive a simple

expression for the root-mean-square variability of a process with such a specman over

an interval of time or space. The resulting expression yields the power-law time

dependence characteristic of fractal processes, but can be generalized to give the tem-

poral variability for more general spectral behaviors. The method is applied to spectra

of crustal strain (to show what size of strain events can be detected over periods of

months to seconds) and of sea level (to show the difficulty of extracting long-term

rates from short records).

1. Introduction

Many types of geophysical data come from processes so complex that their out-

come is best taken to be random, even if the underlying physics is not; the most

efficient characterizations of such data are likely to be a statistical model. The aim of

this paper is to develop a useful relation for a particular (but common) class of such

models, and show several applications if it.

The particular type of model considered might be called the power-law process.

This is a one-dimensional stochastic process whose behavior in the time domain (or

space domain if appropriate) we denote by x (t); the time-domain behavior is such that

its power spectrum has the form

P (f)=Po (1)

where f is spatial or temporal frequency, P0 and f0 arc normalizing constants, and v

is the spectral index. The reason for adopting this form is that it is observed to be a

good fit to the spectra of a wide variety of geophysical phenomena, often applying

over many decades of frequency. The index v generally falls in the range -3 to -I,

meaning that the energy in low frequencies exceeds that at high frequencies (a "red"

spectrum). Spectra of this form have been found for bathymetry with v = -2.3

[Malinavemo, 1989]; fault and joint geometry, with v = -2 [Power et al., 1987]; and

crustal deformation, with v = -2.7 [Wyatt et al., 1988].

Despite the ubiquity of stochastic processes with power-law spectra, they have

received relatively little attention in the statistical literature. The only exception has

been the case v = -2, which corresponds to a random walk (Brownian motion): this is

the integral of white noise (for which v = 0), the spectral index being shifted to -2 by

the operation of integration (and squaring to get power). Mandelbrot and Van Ness



[1968] developed mathematical forms for processes that have power spectra close to

(1), those with -3 < v < -1 being termed "fractional Brownian motions," and those

with -1 < v < 1, "fractional Gaussian noises." Mandelbrot [1983] provides a general

discussion of these, and Feder [1988] a readable introduction.

For clarity, it should be noted that the models introduced by Mandelbrot do not

have exact power-law spectra [Graf 1983], and indeed are more usually discussed in

terms of their behavior under changes in time scale (assuming them to represent a time

series). In this view, the important parameter becomes a number H, called by Man-

delbrot [1983] the Hurst exponent; as we will see below, H = -tA (v + 1). In practice,

both Mandelbrot's models and the spectral form (1) are mathematical idealizations, and

in different situations either one might be the better description of actual data. I have

chosen to use (1) as a model because my main purpose is the interpretation of spectra,

for which (1) can easily be generalized (Section 4). It is worth noting that recent sta-

tistical studies [Mohr, 1981; Graf, 1983] have shown that the best method for deter-

mining H is to compute the power spectrum, fit a function of the form (1) to it, and
then find H from the v so determined; in that sense v could be regarded as the more

fundamental parameter.

However, it should also be noted that (1) is not in general a complete

specification of a process; the power spectrum is only a summary of second moments

(variance versus frequency). Stochastic processes with identical power spectra can

have very different appearances in the time domain [Press, 1978]. We address this

point more fully below.

2. Time-Domain Variation

The question to be addressed here is how to go from the power spectrum (1) to

the variation of the process over time T; that is, to the statistics of

YT(t) = x (t+T) - x (t) (2)

This quantity was introduced by Kolmogorov in studiesof the theory of turbulence,

and under the name of structurefunctionof x itssecond moment has seen wide use in

meteorology and elsewhere [Lindsay and Chie, 1976]. The attractionof looking at the

variationof x over a fixed time T is thatyr(t) is often stationary,and thus easily

characterized statistically,even when x(t) is nonstationary (as must be true for

v < -I). But the statisticsof YT maY often be as of much interstas those of x; in par-

ticular,if we want to decide whether some recentfluctuationin x (t) isconsistentwith

itspast behavior itisto the distributionof Yr thatwe must turn. Unfortunately,ifwe

choose to summarize thispast behavior as having a spectrum of the form (I),the frac-

tionalBrownian motions of Mandelbrot and Van Ness [1968] turn out to be very

inconvenient, since the expression for the power spectrum of such processes is

extremely complicated [Graf, 1983; Geweke and Porter-Hudake, 1983]. There is thus

no simple relationship between the spectrum of such processes and their variation in

the time domain;

There is however a relatively simple method whereby we can relate the spectral

level (1) to the distribution of yr(t), provided that we only aim to find only the second

moment, or variance, of YT (denoted by <yr2>), which, as noted above, is the structure

function. This restriction is of course unavoidable given that our basic description is



the power spectrum. Specifying only the second moment is adequate to define the dis-

tribution of YT if it is Gaussian. This restriction will not usually be seriously violated

for real data, but should be kept in mind before inferences about the complete distribu-

tion are made from the value of <yTZ>.

To determine <yTz> from the spectrum, we observe that y (t) is derived from x (t)

by convolution; we can rewrite (2), in the notation of Bracewell [1965], as

s(,)] o)
Straightforward application of the results of Fourier theory then shows that the power

spectrum of Yr is given by

Py (f ) = IOr([ )12ex (/")

where Gr (/') is the frequency response of the convolution filter, used to produce y (t)
from x (t) namely

IOr(f )12 = 4sin2_fT

Finally, since the variance of a random process is equal to the integral of its power

spectrum we find

<yT2> = t py(f )df = t4px(f )sin21cfTdf (4)

Other methods than (2) of forming auxiliary series exist, and some have long been

used in (for example) studies of oscillator stability. Rutman [1978] discusses many of

these and shows how the transfer-function approach just discussed can be used to

derive their behavior for different spectra. (The structure function is one quantity dis-

cussed, but because of its limited usefulness for oscillator studies it is not considered

in any detail.)

If we now specialize P_ff) to the form (1) and make the change of variable

u = xfT, we find

4P° T'-(v+l)i<yT2> = _ _ uVsin2u du = Cv P"'_°T-(V+l) (5)
fo fff

This immediately implies that the standard deviation of YT, OT = , is

proportional to T "(v+l_, or T H in Mandelbrot's notation; for v = -2, we find 07- pro-

portional to T vl, the familiar result for Brownian motion. The definite integral in (5),

and thus the coefficient C v, can be found in closed form:

-1

Cv = 2v+l_VF(_v )cos(vr_2)

which for v = -2 gives C v = 2_ 2. Figure I shows C_ over the range -3 < v < -l,

and illuswateshow the expression (4) goes to infinityat both limitsof this range

because of the divergence in the integralin (5). These divergences occur at opposite

limitsof the integral;put crudely, as v approaches -3, the low-frcqucncy fluctuations

in x(t) become so large thaty(T) becomes nonstationary,while as v approaches -l,

the high-frequency fluctuationsin x (t) approach an ultravioletcatastrophe,with infinite



variance at high frequencies. This latter divergence will not be a concern in practice,

and could be eliminated in the theory by replacing the _-functions in (3) with finite-

width sampling functions.

A major assumption has been passed over in using equation (1) to go from equa-

tion (4) to equation (5); namely, that while (4) presupposes x (t) to possess a power

spectrum, any process with an apparent spectral index less than -1 must be nonstation-

ary, so that its spectrum does not exist: a contradiction more apparent than real. It is

true that (1), with v < -1, cannot describe the specmma of a stationary process. How-

ever, if we suppose the Px (]') to be described by (1) for f > fb, and to be (say) con-

stant at P o(fb/f 0)v for f < fb, x (t) will be a stationary process, the operations lead-

ing from (4) to (5) will be valid, and, the result in (5) will be essentially unchanged as

long as T ¢: fb -l. While introducing such a cutoff frequency is in one sense arbitrary,

it must exist for any actual process (see, for example, Keshner [1982] for such a model

for l/f noise). Since the finite span of our observations will always render us incapa-

ble of observing it, there seems to be no reason to avoid introducing it to avoid the

difficulties into which a too-strict adherence to an ideal mathematical model would

otherwise lead us [Slepian, 1978].

3. Comparison with Spectral Crossover Approach

Agnew [1987] described another problem relating to power-law processes: How

to compare a record whose errors are of this form with measurements with indepen-

dent error o made at regular time intervals A. (This characterizes the problem of com-

paring crustal deformation measurements made using strainmeters and tiltmeters with

those made by geodetic methods.) For a spectral index less than -1, there will be some

frequency at which the fluctuations in the power-law errors equal the error gotten by

averaging the independent measurements. At a higher frequency the power-law errors

will be smaller and using records with such errors will give a better result; at lower

frequency the independent errors, suitably averaged, will be superior.

This problem is easily solved if cast in spectral form (Figure 2). The spectrum of

the independent-error measurements must be constant, with level Pro, from 0 to the

Nyquist frequency, (2A) -1. Since the integral of the specmma is the variance,

Pm= 2o_A. This equals the power-law spectrum (1) at a crossover frequency

fc = I . (6)

which thus sets the boundary between one or another process having a lower level.

The crossover frequency can be equally easily obtained graphically for a spectrum of

more general shape, though a closed-form expression becomes cumbersome. To give a

concrete example, we may compare the strain _pectrum shown in Figure 3 with
repeated distance measurements with a o of 10-. If these were made weekly, the

equivalent spectral level would be 1.2 x 10-8 e2/Hz, or -79 dB, giving a crossover fre-

quency corresponding to a period of 300 days; if they were made daily, this period

becomes 200 days.

The theory developed in Section 2 gives another way of looking at this problem.

At a period T c = fc -1, the rms fluctuation in the power-law process will be (from (5)



and (6))

2 [ P 0 I-v/2 2(v+ly(2v)o.(l+v)tv A(l+v)/(2v)

>"=c? LT2J
The error in the independent-measurement series,suitablyaveraged, will bc N-"_co

where N is the number of measurements; obviously for regular sampling N = Tc/A.

Again using (6),wc find

oN -',4 1

<,y 2 >'_ 'A
7", (2Cv)

which is always less than one. This is as it should be, since at the crossover frequency

the independent measurements should be capable of resolving the fluctuations of the

power-law series.

4. Generalizations

As noted in Section 2, it is straightforward to modify the convolution (3) to take

account of a finite-length sampling interval; such a modification eliminates the ultra-

violet catastrophe for v >-1. A perhaps less obvious generalization allows us to

extend this method to (in principle) spectral indices less than -3. The basis for this is

the recognition that the convolution function in (3) is equivalent to the fundamental
wavelet of Robinson and Trcitel [1980] denoted by the sequence (1, -1). The fre-

quency response of this can be shown to have two zeroes at zero frequency; it is these

zeroes, of course, which cancel out the singularity in the integral in (5). This immedi-

ately suggests that more extreme singularities could be removed by adding more

zeroes, such addition can be achieved by convolving fundamental wavelets together.

For example, convolving two wavelets gives the sequence (1, -2, 1); the corresponding

sarnpling sequence

w(t) = x(t+2T) - 2x(t+T) + x(t)

is equivalent to convolution with a function whose gain has four zeroes at f = 0. The

quantity <wL> thus will be well defined for-5 < v <-1. This approach makes it

easy to scc how to design higher-order versions of the usual structure function, some-

thing that is less clear in the usual treatments of this subject [Lindsay and Chic, 1976].

Another generalization is to note that (4) applies for a general spectral shape

Px (/"), provided that at low frequencies Px (f) increases less rapidiy than f-3 and at

high frequencies decrea_s more rapidly than f-1. Of course, we then will not usually

bc able to find a closed-form expression for <yT2>, but must calculate it numerically.

This allows us to proceed even in the face of the departures from power-law (or frac-

tal) behavior noted, for example, by Gilbert [1989]. A simple spectral shape which fits

many spectra quite well is a pieccwise power-law form; for i=1,...

pi/_/[v_r'_ fi-1 <f <fi (6)Px(f) =

with f0 being set to zero. The integral (4) then becomes the sum of integrals over

each frequency interval. Because of the oscillatory nature of the integrand and the

wide range in frequency, the integration must be done with some care. If f l is set to



a value such that f 1T ,_ 1, we may approximate sin 7tfT by gfT to get

ft P 1_'2T2 _ vf+3 _ v_+3
I ex (f) sin2xf T df = ([i - fi-! ) (7)

f ,-_ (V+3) f iv'

For the other integrals it is useful to write sin_fT = l/z (1 - cos 2rifT), whence

f' pi[[fiv+l-fiv_.+ll 1 f'f Px (f) sin2xf T df = 27/v v+l - _ f v cos 2nfTa/ (8)f,-I fI-l

For T or f sufficiently large, the integral in the second expression will clearly be close

to zero. We thus evaluate <yT2> in three ways: for fT _ 1, we use (7); for fT _ 1,

we use (8) with the integral over cosine omitted; and for intermediate values we use

the full expression in (8). For v > 0, this means calculating the integral numerically;

for v < 0, we may use continued-fraction or Taylor-series approximations to the

incomplete gamma function.

5. Applications

Figure 3a shows the spectrum of earth strain (northwest-southeast extension)

measured at Pifion Flat Observatory in southern California. The peak at high frequen-

cies is caused by microseisms; the narrow peaks at multiples of 1 cycle/day

(1.16 x 10 -5 I-Iz) are caused by earth tides and thermal effects. Except for these nar-

row peaks, which being largely deterministic can be predicted and removed from the

data, the spectrum is very well fit by equation (6) the piecewise power-law model.

Figure 3b shows the value of <yT2> ½ computed from this fit, and also for the case

where the spectrum is assumed to fall off as f-2 above 0.1 Hz, as would be so if the

data were highpassed to remove microseismic energy. At periods from 10 to 100

seconds, Figure 3b shows a constant value of 0.05 n e, which may be taken to be the

resolution limit of this data for such rapid changes as the coseismic offsets discussed

by Wyatt [1988]. At longer times the fluctuations increase steadily.

If we had, in Figure 3, plotted rates of rms swain change against time interval, we

would see that the longer the time interval, the slower the apparent rate. It has been a

frequent observation of geologists that many rates of deformation, examined over long

times, appear to be much less than those determined over shorter times (for example,

geodetically). But such behavior is exactly what would be expected if the deforma-

tions being considered, like those of shorter period shown in Figure 3, had a power-

law spectrum with index between -3 and -1. Such a stochastic model allows us to

reconcile apparent changes of rate with strict uniformitarianism (the "null" hypothesis

of Gilluly [1949]): the present will always appear to be the most active period, when-

ever it happens to be.
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